欢迎登录材料期刊网

材料期刊网

高级检索

  • 论文(1386)
  • 图书()
  • 专利()
  • 新闻()

Guangzhou Institute of Energy Conversion,The Chinese Academy of Sciences,Guangzhou 510070,China

B.W. Wang , H. Shen

金属学报(英文版)

Ni-Cr System solar selective thin solid films were prepared by d.c. magnetron reactivesputtering under the atmosphere of O2 and N2. Ni-Cr alloy was chosen as targetmaterial and copper sheets as substrate. Using SEM, Spectrophotometer and Talystepto analyze the relations between the selective characteristic and the structure, theformation and the thickness of the thin films. The aim is to obtain good solar selectivethin films with high absorptance and low emittance, which is applied to flat plate solarheat collectors.

关键词: solar selective thin film , null , null , null

Recent developments in high temperature intermetallics research in China

Intermetallics

A comprehensive survey was made of various advances of intermetallics research in China. The investigation focussed on the fundamental research and materials development. Charge density distribution and site occupancy of alloying elements, environmental embrittlement and chemical reaction, interface structures and phase transformation at the atomic scale, nanocrystalline intermetallics and its thermal stability, superplastic behavior and anomalous yield strength peak are reviewed. Several Ti-Al and Ni-Al based alloys have been manufactured, and show good mechanical properties. Diverse components have been fabricated successfully. (C) 2000 Elsevier Science Ltd. All rights reserved.

关键词: aluminides, miscellaneous;hydrogen embrittlement;mechanical properties;at high temperatures;superplastic behavior;phase interfaces;grain-boundary fracture;in-situ composites;environmental;embrittlement;hydrogen embrittlement;ni3al;compression;alloys;co3ti;boron;feal

Atomic scale characterization of layered ternary Cr2AlC ceramic

Journal of Applied Physics

Cr2AlC is a recently developed layered ternary carbide. In this work, the atomic scale microstructure is reported. The layer stacking sequence of Cr and Al atoms has been clearly resolved. The atomic scale characterizations were realized by means of high resolution transmission electron microscopy and Z-contrast scanning transmission electron microscopy. Furthermore, electron energy loss spectroscopic analysis revealed that the Cr-C bonds in Cr2AlC are characterized by a strong sigma bonding. (c) 2006 American Institute of Physics.

关键词: liquid reaction synthesis;transmission electron-microscope;ab-initio;calculations;al-c;ti2alc;behavior;films;ti

MICROSTRUCTURE AND PROPERTIES OF SiC_w/6061Al COMPOSITE The Author is now with Institute of Metal Research,Academia Sinica,China

MA Zongyi YAO Zhongkai Harbin Institute of Technology , Harbin , China

金属学报(英文版)

The SiC_w/Al composite prepared by squeeze casting has a combination of superior room temperature specific strength and modulus together with excellent thermal properties.The extrusion can make an improvement on the strength and ductility of the composite from 582 MPa as squeeze casted up to 639 MPa,and on the transformation from isotropic to the anisotropic structure.This seems to be explained by the orientation of whiskers and the densification of dislocations in matrix.TEM observation indicates that the stacking fault is the usual planar defect on the SiC_w surface. composite;;SiC whisker;;Al alloy;;microstructure

关键词: composite , null , null , null

Molecular dynamics study of atomic transport properties in rapidly cooling liquid copper

Journal of Chemical Physics

Based on Mei's embedded atom model [Mei , Phys. Rev. B 43, 4653 (1991)] molecular dynamics simulations have been performed to investigate the rapidly cooling processes of Cu. The atomic transport property, namely the self-diffusion coefficient, is computed in the liquid state, and the results near the melting point of Cu are in good agreement with experimental data and other computational values. The atom diffusion movements during the long period of relaxation have been also studied around the solidification temperature T-c. To describe the complex microstructural evolutions during the rapidly cooling processes and the long relaxation processes, the pair correlation function and the pair analysis technique are used. It is demonstrated that the crystallization of amorphous Cu is caused by the atomic diffusion. (C) 2004 American Institute of Physics.

关键词: transition-metals;computer-simulation;supercooled-liquid;model;fcc;potentials;diffusion

Introduction to atmospheric corrosion research in China

Science and Technology of Advanced Materials

In this paper, we introduce the research on atmospheric corrosion in China. We describe the climate characteristics and the classification of atmospheric corrosivity across the whole country. We also describe the rusting evolution under simulated wet/dry cyclic conditions. (C) 2007 NIMS and Elsevier Ltd. All rights reserved.

关键词: atmospheric corrosion;corrosivity;rusting evolution;weathering steels;rust;mechanism;so2;o-3;no2

Development of Cast Superalloys for Gas Turbines in China

CHEN Rongzhang CHEN Wanhua Institute of Aeronautic Materials , Beijing 100095 , China.

材料科学技术(英)

As in other countries,significant achievements in the research of cast superalloys for many years have also been obtained in China.These results are important contribu- tion to the development of aero and land-based gas tur- bine engines.

关键词: cast superalloy , null

Cutting forces related with lattice orientations of graphene using an atomic force microscopy based nanorobot

Applied Physics Letters

The relationship between cutting forces and lattice orientations of monolayer graphene is investigated by using an atomic force microscopy (AFM) based nanorobot. In the beginning, the atomic resolution image of the graphene lattice is obtained by using an AFM. Then, graphene cutting experiments are performed with sample rotation method, which gets rid of the tip effect completely. The experimental results show that the cutting force along the armchair orientation is larger than the force along the zigzag orientation, and the cutting forces are almost identical every 60 degrees, which corresponds well with the 60 degrees symmetry in graphene honeycomb lattice structure. By using Poisson analysis method, the single cutting force along zigzag orientation is 3.9 nN, and the force along armchair is 20.5 nN. This work lays the experimental foundation to build a close-loop fabrication strategy with real-time force as a feedback sensor to control the cutting direction. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4767230]

关键词: layer graphene;nanoribbons

  • 首页
  • 上一页
  • 1
  • 2
  • 3
  • 4
  • 5
  • 下一页
  • 末页
  • 共139页
  • 跳转 Go

出版年份

刊物分类

相关作者

相关热词